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Abstract—Audio CAPTCHA (Completely Automated Public
Turing test to tell Computers and Humans Apart) is an acces-
sible alternative to the traditional CAPTCHA for people with
visual impairments. However, the literature has found that audio
CAPTCHA suffers from both lower usability and security than
its visual counterpart. In this paper, we propose AdvCAPTCHA,
a novel audio CAPTCHA generated by using adversarial machine
learning techniques. By conducting studies with people with
and without visual impairments, we show that AdvCAPTCHA
can outperform the status quo audio CAPTCHA in security
but not usability. We demonstrate AdvCAPTCHA’s feasibility
of providing detection of malicious attacks. We also present an
evaluation metric, thresholding, to quantify the trade-off between
usability and security for audio CAPTCHA design. Finally, we
discuss approaches to the real-world adoption of AdvCAPTCHA.

I. INTRODUCTION

CAPTCHA is a technique to determine whether the user is
human or not to protect online systems from bots. The typical
CAPTCHA consists of a series of visual-oriented tests that
are approachable for humans but challenging for machines
to solve (e.g., recognizing distorted hand-written characters).
However, such visual-based tasks are not accessible to people
with visual impairments (PVIs). As a result, audio CAPTCHA
— which prompts users with continuous audio cues — has
been developed as the alternative to support the access of PVIs.

The status quo audio CAPTCHA tasks are designed with
a similar concept as its visual-based counterpart: users will
be asked to type in heard audio digits or words that are
intentionally designed to be challenging for machines to recog-
nize. Specifically, these tasks are usually composed of several
alphanumeric or words spoken at variant speeds and pitches,
combined with ambient background noise. These elements are
brought in to create randomness, preventing the system from
automated speech-to-text attacks.

Though audio CAPTCHA makes the online security
mechanism more accessible, prior studies found that audio
CAPTCHAs are challenging and time-consuming to solve for
users, especially for PVIs [9], [12]. Moreover, several potential
security issues have been discovered in audio CAPTCHA such

that the verification tasks can be solved by using a combination
of machine learning techniques [10], [28], [30], [32].

To strike the balance between the security and the us-
ability of the audio CAPTCHA, we present AdvCAPTCHA,
a novel computational method that leverages adversarial ma-
chine learning techniques to generate audio CAPTCHAs to
defend against speech-to-text models while preserving the
CAPTCHAs’ usability under perturbations. We draw our de-
sign from adversarial machine learning techniques in the audio
domain, which have been a popular methodology to produce
adversarial examples via computed perturbations that break
machine learning-based speech-to-text applications [2], [14].
Additionally, such perturbations could potentially be generated
to be imperceptible by humans [27], making the perturbed
audio sound close to the original audio. We design a total
of three AdvCAPTCHA variants that are based on different
audio perturbation mechanisms, including Kenan, Devil, and
Volcano. To summarize, Kenan works by using the Discrete
Fourier Transform to break down audio into components, then
selectively removes those below a certain intensity threshold
to create speech that is still intelligible to humans but causes
machines to mistranscribe it; Devil is generated through an
adaptive audio perturbation approach via a substitute model
trained on data from speech-to-text applications, to create
human-imperceptible background noises that cause machines
to mistranscribe, while being less disturbing for humans; and
finally, Volcano combines audio digits that are only recog-
nizable for machines and audio digits only recognizable for
humans to target text-to-speech applications to output pre-
defined digits different from the real CAPTCHA task answers.

We examine a comprehensive evaluation of Adv-
CAPTCHAs (Section V) with locally trained machine learning
models and commercial automatic speech recognition (ASR)
services. We use the currently common audio CAPTCHA
design scheme as a baseline for the comparison. We found
that the three AdvCAPTCHAs could yield an estimated attack
success rate (i.e., a malicious attacker can computationally
solve the audio CAPTCHA task with commercial ASR ser-
vices) of 0.22%, 31.91%, and 61.19%, respectively, outper-
forming the baseline’s 70.10%. Furthermore, we demonstrate
AdvCAPTHAs’ capability to perform detection for attacks
— e.g., honeypot1 — and can identify around 99% of the
commercial ASR speech-to-text attempts. Such a property can
further enhance AdvCAPTHAs’ defense capability in real-
world settings.

1https://en.wikipedia.org/wiki/Honeypot (computing)
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We also conducted a two-fold evaluation with 121 sighted
users and 11 PVIs to better understand the usability of the
AdvCAPTCHAs (Section VI). Our findings reveal that Adv-
CAPTCHAs’ usability is, overall, lower or, at most, compara-
ble to the baseline method. Finally, we propose thresholding
(Section VII) — an evaluation metric that quantifies the trade-
off between AdvCAPTCHAs’ security and usability — to find
the optimal balance between security and usability based on
design priorities.

In summary, the contributions of this work are three-fold:

• AdvCAPTCHAs, compared with the status quo audio
CAPTCHA design, provide better security against
both locally trained machine learning models and
commercial ASR models with the potential to preserve
comparable usability.

• AdvCAPTCHAs demonstrate the feasibility of provid-
ing detection of attacks. To our knowledge, this is the
first work to implement honeypot-like attack detection
in the context of audio CAPTCHA.

• We proposed an evaluation metric — thresholding
— that quantifies the trade-off between usability and
security in CAPTCHA design.

II. RELATED WORK

A. Adversarial Machine Learning in Audio

Adversarial machine learning techniques have been shown
effective in deceiving machine learning models [31]. When
applied to the audio domain, the adversarial attacks can lead
machines to perceive audio differently from what humans
hear [14]. These methods were first used to attack voice-
controlled devices. Hidden voice command [13] generates
sounds that are unintelligible to humans but are understandable
as a specific command to mobile devices. DolphinAttack [35]
uses ultrasonic carriers to produce inaudible attacks that can
trigger several smart home and mobile devices while remaining
unnoticeable by humans.

Instead of producing unintelligible or inaudible audio, [14]
adds a small perturbation to an existing audio clip. The
perturbation has little effect on human understanding but can
make the perturbed audio be recognized as a completely
different target sentence. Subsequent works have extended
these attacks in several aspects. For example, [27] leverages
the psychoacoustic principle to make the perturbation almost
imperceptible to the human ear. [25] perturbs a music clip
instead of speech audio and thus can be used in a different
attack scenario. [1] extends the hidden voice command attack
to the more practical black-box attack setting — i.e., attackers
have no access to model parameters.

The same “attack” methods can be used as defenses
in the CAPTCHA design. Shekhar et al. [29] proposed to
use adversarial examples to enhance the robustness of audio
CAPTCHA. However, they only use simple classifiers instead
of the more powerful ASR models as the attacker. In this paper,
we identify and leverage two existing audio perturbations
helpful in designing a secure and usable audio CAPTCHA:
Hear “No Evil”, See “Kenansville” [2] and Devil’s whisper
[15]. Note that when applying adversarial machine learning

in the CAPTCHA designs, we need to select a model as the
target victim model for adversarial example generation. Such
model will be referred to as victim model in this paper.

B. Security and Usability of Audio CAPTCHAs

The security of audio CAPTCHA [16] has been long
studied in the literature. Researchers have tried to “break”
audio CAPTCHA challenges using machine learning models
trained by annotated audio CAPTCHA corpus. For example,
Tam et al. [32] were able to use SVM to break the older
version of Google audio reCAPTCHA with 45% success rate;
Bursztein and Bethard [11], on the other hand, used a super-
vised learning algorithm to break 75% of audio CAPTCHAs on
eBay. In a more recent study, Sano et al. [28] leveraged hidden
Markov models and built a reCAPTCHA solver with a 52%
success rate. In another research thread, instead of training
their own speech recognition algorithms, researchers consider
threat models in which attackers may utilize accessible com-
mercial speech-to-text services to attack audio CAPTCHAs
and achieve high success rates. For example, Solanki et al. [30]
tested a set of state-of-the-art commercial ASR on breaking
common audio CAPTCHA services, and demonstrated that it
is both applicable and profitable ($485.3 per day by breaking
Google’s reCAPTCHA v2.0) for attackers to use such an
attack system. Bock et al. [10] proposed unCaptcha, which
also leveraged from a set of ASR services, and achieved an
85.15% success rate on breaking reCAPTCHA challenges.
Following prior work, we consider both machine learning
models and commercial ASR models as threat models to
evaluate the security of our proposed AdvCAPTCHAs, which
will be elaborated in Section III.

While audio CAPTCHAs are designed for PVIs as accessi-
ble alternatives, they have also been long condemned for their
poor usability [9], [12] or privacy [4], [7]. Specifically, a prior
study found that audio CAPTCHAs on common websites were
harder and required more time to solve than the visual-based
counterparts [12]. Thus, researchers have proposed alternative
designs to improve the usability, either combining modalities
beyond audio [20], looping in external human assistants [36],
or introducing additional puzzles or mechanisms on top of
the audio representations [5], [7]. Depending on the type of
tasks that users are required to complete, audio CAPTCHAs
could be classified into content-based and rule-based [18].
For the former, users are normally asked to perform “speech-
to-text” tasks, which is the most common type of design;
for the latter, users will be asked to solve quizzes such as
simple math calculation [18]. Such audio CAPTCHAs, while
mitigating the need for short-term memory (i.e., memorizing
the words you heard) when solving CAPTCHA tasks, their
security were compensated as they could be easily solved by
attacks with naive threat models, and could be even more
vulnerable to attackers with prior knowledge of these audio
CAPTCHAs (e.g., easily performing white-box attack) [18].
Considering the low security of rule-based audio CAPTCHAs
currently achieve, it may not be surprising that while content-
based CAPTCHAs may be less usable, they are still the status
quo audio CAPTCHAs. In this paper, we focus on improving
content-based audio CAPTCHAs by enhancing their usability
and security using adversarial machine learning.
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III. THREAT MODEL AND HYPOTHESIS

A. Low-Resourced and Well-Resourced Attackers

We considered two common threat models in the literature
when designing AdvCAPTCHAs:

1) Low-resourced attackers: One common threat model,
which is also introduced in prior work (e.g., [10]), is an
assumption that attackers, instead of training machine learn-
ing models from scratch to break audio CAPTCHAs, would
take a more cost-effective approach to leverage from models
that are ready at hand. Specifically, prior work demonstrates
promising attack success rates to extant audio CAPTCHA by
leveraging commercial ASR services [10], [30]. In this work,
we consider the circumstances where attackers use commercial
ASR services — e.g., Google Cloud Speech, Microsoft Azure
— to implement solvers of AdvCAPTCHAs.

2) Well-resourced attackers: We also considered well-
resourced attackers with sufficient computing resources to
self-train deep models (e.g., access to large RAM and GPU,
multiple computers, and unlimited IP addresses). Additionally,
we consider such well-resourced attacks with both black-box
and white-box scenarios. Here, we borrow the concepts of
black-box attack and white-box attack from the adversarial
machine learning literature, of which the former refers to the
attacker having no access to the information of the “targets”
(e.g., CAPTCHA tasks) when building the attack mechanism,
and the latter refers to the attacker having access to such
information when preparing their attack.

a) Black-box Attack: We consider scenarios when at-
tackers have no prior knowledge of AdvCAPTCHA, nor do
they obtain task samples of AdvCAPTCHA. Given such an
assumption, attackers will fine-tune publicly available pre-
trained speech models with audio digit datasets to improve
attack success rates to audio CAPTCHAs and speed up model
training time [3].

b) White-box Attack: We also consider scenarios when
attackers are able to get prior access to AdvCAPTCHA exam-
ples (e.g., storing AdvCAPTCHA tasks given any occurrence)
before training their models. These AdvCAPTCHA examples
could then be further used to fine-tune attackers’ models to
improve attack success rates to AdvCAPTCHA [3].

B. Targeted and Untargeted Defense of AdvCAPTCHA

We also incorporate attack detection in the design of
AdvCAPTCHA. Specifically, we create AdvCAPTCHA tasks
as targeted adversarial examples, which can mislead attacker
models to output our pre-defined digits. For example, a
targeted-defense AdvCAPTCHA can mislead machine learning
models to output “5” when humans perceive it as “3.” Such
manipulated human-machine mismatches could distinguish
automated adversaries from actual human users. It is also
noteworthy that, most of the time, the implementation of
attacker models remains unknown, and thus targeted-defense
AdvCAPTCHA tasks are also required to be transferable
across different machine learning models that could be en-
countered in the real world. Yet, transferable and targeted
adversarial examples in the audio domain have been shown to
be extremely challenging [3]. This work proposes a simple yet

effective methodology to produce transferable and targeted de-
fense (see Section IV). On the other hand, for AdvCAPTCHA
tasks that solely aim to cause ASR models to mistranscribe
the correct answers, we refer to them as untargeted-defense
AdvCAPTCHA.

IV. DESIGNING ADVERSARIAL ML-INFUSED AUDIO
CAPTCHA

The design objective of AdvCAPTCHA is to create audio
CAPTCHAs that better resist attacks from both commercial
ASR services and machine learning-based approaches while
maintaining their comprehensibility to human users. In total,
we created two untargeted-defense AdvCAPTCHAs: Kenan
and Devil, and one targeted-defense AdvCAPTCHA: Volcano.

A. Kenan AdvCAPTCHA Design

This audio CAPTCHA was created on top of the “Ke-
nansville” Perturbation proposed by Abdullah et al. [2], in
which the authors successfully created speech audio that made
the state-of-the-art commercial ASR models mistranscribe and
misidentify. In short, the perturbation builds upon the assump-
tion that commercial ASR models recognize speech audio from
its specific characteristics. The authors proposed the approach
to remove the least amount of speech components from the
audio associated with such characteristics that generate speech
audio, causing intentional mistranscriptions to commercial
ASR models. Modifying speech audio will also impact a
human’s ability to recognize the audio. Thus, we engineered
and created a data pipeline to create Kenansville Perturbation
speech audio, while fine-tuning the pipeline to ensure the audio
is still perceptible by humans.

We first decompose the given audio into individual audio
components and retrieve their corresponding intensities via
the Discrete Fourier Transform. Then, we iteratively select
a threshold that makes a “victim” commercial ASR model
(e.g., Google Cloud Speech) mistranscribe the audio. We
then remove all components whose intensity falls below the
threshold. The same process is applied to all of the other victim
ASR models. We refer to the AdvCAPTCHA design as Kenan
in the rest of the paper.

B. Devil AdvCAPTCHA Design

The design of this audio CAPTCHA is inspired by the
Devil’s Whisper Perturbation proposed by Chen et al. [15],
in which the authors aimed to generate human-imperceptible
background noises that make the victim commercial ASR
models mistranscribe. We create similar background noises
to replace the ones used in the status quo audio CAPTCHA
designs, which are disturbing and require higher cognitive
loads to solve the CAPTCHA tasks [12], [34]. By using the
background noises created via Devil’s Whisper Perturbation,
we can create background noises with stronger mistranscribing
capability, yet potentially less disturbing for humans to solve
CAPTCHA tasks.

We first train a local substitute model with data obtained
from querying the victim commercial ASR model (e.g., Google
Cloud Speech). Using the substitute model, we generate adver-
sarial examples that make the victim ASR model mistranscribe.
Additionally, to ensure the effects of the adversarial example
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Fig. 1. Pipeline to generate Volcano AdvCAPTCHA. Volcano AdvCAPTCHA combines the Digit-For-Human-Only (purple box on the left) and the Digit-For-
Machine-Only (blue box on the right). The two navy blue rectangles represent the two input clean digits, digit audio x1 and x2; x[0] and x[1] represent the first
and second elements of the digit audio x2, respectively.

are transferable to the actual victim commercial ASR model,
we iteratively increase the intensity of audio perturbation
until the resulting adversarial examples are also mistranscribed
by the victim ASR model. The same process is applied to
all the other victim ASR services. To enhance the imper-
ceptibility of the resulting perturbed audio, we incorporate
the gradient-based, white-box adversarial attack [27] into the
AdvCAPTCHA tasks generation pipeline. In the rest of the
paper, we refer to this AdvCAPTCHA design as Devil.

C. Volcano AdvCAPTCHA Design

We also create a new speech-to-text adversarial pertur-
bation — Silent Volume-Kenansville Perturbation (Volcano
Perturbation) — to enable attack detection by targeting text-to-
speech applications to output pre-defined digits different from
the real CAPTCHA task answers. The perturbation combines
audio digits that are only recognizable for machines (Digit-
For-Machines-Only) and those only recognizable for humans
(Digit-For-Humans-Only) (see Figure 1).

1) Digits-For-Humans-Only Module — Short Time Fourier
Transform Kenansville Perturbation: To create Digits-For-
Humans-Only, we adapt the data pipeline from the Kenansville
Perturbation (described in Section IV-A) and use Short-Time
Fourier Transform (STFT) as the audio decomposition algo-
rithm, as shown in Figure 1. Specifically, STFT splits the audio
into short time windows before conducting a Discrete Fourier
Transform (DFT) on each window segment and decomposes
the input speech audio into finer components. It is noteworthy
that the goal is to create speech audio that is undetectable —
i.e., return ‘void’ — by speech-to-text applications, different
from the original Kenansville Perturbation proposed by Ab-
dullah et al. [2] which uses DFT instead of STFT, and aims
only to make speech-to-text applications mistranscribe.

2) Digits-For-Machine-Only Module — Silent Volume Per-
turbation: We generate Digits-For-Machines-Only by decreas-
ing the volume of clean-digit audio. Prior work has shown that

with intended distortions, speech audio could be generated
as machine-transcribable but sounds like noises to humans
[1]. After some experiments, however, we found that distorted
audio digits were much less transferable across speech-to-text
applications than merely reducing the audio volume. Based on
this observation, we minimize the volume of clean digits to
the point where text-to-speech applications can still transcribe
them correctly while being hardly comprehensible to humans
(see Figure 1). For each victim commercial ASR model, we
iteratively search for the minimal volume of clean digit audio
that is still transcribable by the model. We found that the
generated digits may sometimes result in audio volumes that
are still perceptible to humans. To further ensure the human
imperceptibility of these digits, we utilized Otsu’s method [26]
and further removed digits with a higher volume — for all
generated digits, we calculated an Otsu’s threshold and filtered
all the digits with volume higher than such a threshold.

Finally, after generating Digits-For-Humans-Only and
Digits-For-Machines-Only, we concatenate the two types of
digits generated from the two modules to create Volcano.

D. Set Up

While various sets of characters (or words) have been used
as the corpus of audio CAPTCHA tasks [9], [12], in this
preliminary exploration, we select one of a common subset —
numeric digits (i.e., 0-9) — to simplify security evaluation, and
to minimize the negative impacts caused by the similarity of
characters’ phonemic (i.e., ‘q’ and ‘u’, ‘8’ and ‘a’) on users’
performance and perceived usability [18], [34]. We generate
all of our CAPTCHA tasks from numeric digits created by
the Google Cloud text-to-speech API2, which provides a clean
audio dataset containing twenty speakers with various pitches
and tones.

2https://cloud.google.com/text-to-speech/
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To provide a control group for AdvCAPTCHA, we include
a baseline design that emulates the industry-wide standard
design, of which we refer to the design of Securimage3,
an open-source CAPTCHA project. The resulting baseline
CAPTCHA tasks contain audio digits of various pitches and
speeds and background noises, which are common audio
CAPTCHA techniques to enhance the difficulty of examining
speech-to-text attacks [9], [12], [34]. We refer to the baseline
audio CAPTCHA design as Baseline in the rest of the paper.

When conducting security evaluation for audio CAPTCHA
tasks, we follow prior work to segment each audio CAPTCHA
task into digits before examining speech-to-text transcrip-
tion/recognition [10]. Specifically, we generate our audio
CAPTCHA digits directly from digit audio clips in our au-
dio dataset created via the Google Cloud text-to-speech API
described above. For usability evaluation, we follow the format
of audio CAPTCHA tasks of prior work [18], with each
audio CAPTCHA task consisting of one-second silence at the
beginning and a 1.25-second timespan between each digit. The
resulting CAPTCHA tasks are 10-12 seconds.

V. SECURITY EVALUATION

Following the threat models described in Section III, the
security of AdvCAPTCHA will be evaluated with two types
of speech-to-text adversary attacks that utilize: 1) commercial
ASR services and 2) machine learning models trained in black-
box attack and white-box attack settings, respectively.

A. Experiment Setup

1) Attack Using Commercial Automatic Speech Recogni-
tion Models: We select five representative commercial ASR
models: Google Cloud Speech (Default Model), Google Cloud
Speech (Phone Call Model), Microsoft Azure, IBM, and Face-
book Wit. These models have been used to represent the state-
of-the-art commercial ASR services in prior studies [2], [10],
[30], and are easily accessible for attackers.

We feed each generated audio CAPTCHA digit clip (as de-
scribed in Section IV-D) into the aforementioned commercial
ASR models and record the transcription results. We further
utilize optimization techniques that can potentially boost the
attack success rates. Specifically, we follow prior works to
1) map raw transcriptions to digits that share similar/same
phonemes [10], [30], and 2) build an ensemble model that
produces transcriptions based on the outputs of all the five
selected commercial ASR models [10], which we refer to as
Ensemble in the following sections.

We follow the unCaptcha approach [10] to attack audio
CAPTCHA tasks and conduct an exact-homophone mapping,
in which we map transcriptions results to digits that share
the same phonemes (e.g., ’for’ and ’four’). For the Ensemble
model, we use majority voting to produce the final digit output
based on all five commercial ASR model outputs. Finally,
whenever ASR models do not provide a valid digit output or
when draws occur in the Ensemble model (e.g., ’one’ and ’five’
receive the same votes), we randomly select among all digits
(i.e., 0-9) or the ones with the highest votes. The experiment
was conducted in May 2021.

3https://www.phpcaptcha.org/

2) Attack Using Self-trained Machine Learning Models:
We consider both the black-box and white-box scenarios
when examining our machine learning-based attacks on Adv-
CAPTCHA. To recap, we assume attackers performing black-
box attacks have no prior knowledge of how our Adv-
CAPTCHA is generated, except that AdvCAPTCHA is made
from audio digits created from the Google Cloud text-to-
speech API. Thus, we self-train a local ASR model with
numeric digits created by Google Cloud text-to-speech API.
To speed up our model training, we fine-tune a Deep-
Speech2.0 [6] 4 model pre-trained on the Librispeech 5 dataset.
Since the output space of the DeepSpeech model is character-
based, for each input audio digit, we chose the digit with
the minimum Levenshtein Distance 6 from the output string.
We refer to the model as Black-box Self-trained Model in the
rest of the paper. We feed audio digit clips of the three types
of AdvCAPTCHA into the Black-box Self-trained Model and
record the results.

On the other hand, we assume attackers who perform
white-box attacks collect AdvCAPTCHA examples and use
them to fine-tune their local DeeepSpeech models. To avoid
over-fitting, we add supplemental corpus from Fluent Speech
Command 7 to the training data. Following prior work [15], we
use seven hours of audio corpus from Fluent Speech Command
in addition to the AdvCAPTCHA examples of around one
hour. We refer to those models as White-box Self-trained
Models. We report the average accuracy of five-fold cross-
validation for White-box Self-trained Models.

3) Evaluation Metrics: For each type of audio CAPTCHA
(i.e., Baseline, Kenan, Devil, Volcano), we measure its security
of the digit-level Average Digit Error Rate (DigitErrRate), and
the task-level Estimated Attack Success Rate (AtkSucRate).
The Average Digit Error Rate represents the errors in digit
classification of a CAPTCHA scheme against speech-to-text
applications — e.g., the higher the error rate, the higher
the chances an ASR model fails to generate a correct cor-
responding digit transcription of an audio CAPTCHA. The
Estimated Attack Success Rate, on the other hand, is a security
measurement estimated based on the Average Digit Error
Rate of an audio CAPTCHA scheme against a speech-to-text
application (e.g., ASR model) to represent the probability of
an attacker using that speech-to-text application to break a six-
digit audio CAPTCHA task.

We set up our experiment based on our threat models (see
Section III): we assume attackers will first clip the six digits in
an audio CAPTCHA task and recognize each digit separately.
It is also noteworthy that we quantify the trade-off between
human errors (as a proxy of usability) and security by setting
a parameter T for each CAPTCHA design — by correctly
answering at least T digits in a six-digit audio CAPTCHA
task, the task is considered passed (the client is a human).
In practice, the optimal T for each CAPTCHA design should
maximize the chances of humans being classified as humans
while minimizing the chances of machines being classified
as humans. The task-level Estimated Attack Success Rate of

4https://github.com/SeanNaren/deepspeech.pytorch
5https://www.openslr.org/12/
6https://en.wikipedia.org/wiki/Levenshtein distance
7https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-

understanding-research/
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TABLE I. THE DIGIT ERROR RATES AND ESTIMATED SUCCESS RATES FOR LOW-RESOURCED ATTACKERS ATTACKING EACH CAPTCHA DESIGN WITH
COMMERCIAL ASR MODELS. THE MINIMUM SQUARE ERROR (MSE) FOR EACH CAPTCHA INDICATES THE LEVEL OF AUDIO PERTURBATION.

Avg.
MSE

Google Cloud Speech
(Default Model)

Google Cloud Speech
(Phone Call Model) Microsoft Azure IBM Facebook Wit Ensemble

Avg. digit
error rate

Est. attack
success rate

Avg. digit
error rate

Est. attack
success rate

Avg. digit
error rate

Est. attack
success rate

Avg. digit
error rate

Est. attack
success rate

Avg. digit
error rate

Est. attack
success rate

Avg. digit
error rate

Est. attack
success rate

Baseline 2.81e-2 32.50% 9.46% 9.88% 53.57% 27.25% 32.39% 67.50% 0.12% 52.38% 1.17% 5.75% 70.10%
Kenan 7.45e-4 88.75% 0.01% 85.62% 0.03% 35.00% 31.91% 77.50% 0.28% 74.38% 0.52% 35.00% 31.91%

Devil 5.33e-4 23.57% 56.82%
(19.93%, T=6) 15.71% 75.97%

(35.86%, T=6) 25.71% 51.72%
(16.81%, T=6) 65.00% 0.22%

(0.18%, T=6) 52.14% 9.1%
(1.20%, T=6) 7.86% 92.51%

(61.19%, T=6)
Volcano 1.01e-1 93.00% 0.58% 91.50% 1.01% 91.00% 1.18% 90.00% 1.59% 88.50% 2.32% 95.00% 0.22%

each CAPTCHA design, thus, can then be calculated from
the digit-level Average Digit Error Rate as: AtkSucRate =∑6

t=T

(
6
t

)
(1−DigitErrRate)t(DigitErrRate)6−t. The binomial

probability formula represents the probability that an ASR
model correctly outputs at least T digits in a six-digit audio
CAPTCHA task (1 ≤ T ≤ 6). We provide a detailed
discussion on the selection of T for each CAPTCHA design in
Section VII. To briefly summarize, we found different optimal
values of T for different CAPTCHA designs: T = 6 for
Baseline, T = 5 for Kenan and Devil, and T = 3 for Volcano.
For each six-digit CAPTCHA task, a client will be considered
as “human” as long as they output any five of the six digits
correctly in Kenan, three for Volcano, and five for Devil. The
T used in each CAPTCHA design remains the same, unless
specified, for the rest of the paper because we see it as a
possible parameter used when deployed in the real world.

Note that the actual Attack Success Rate is likely to
be lower than our estimation. This is because we assume
perfect clipping from audio CAPTCHA tasks to digits in our
experiment, which is unlikely in a real-world setting and will
unavoidably decrease attackers’ success rate.

B. Results

As a reminder, the creation of AdvCAPTCHA requires a
victim model as an anchor to ensure the capability against
speech-to-text attacks. Indeed, such defensive capability varies
based on which victim model is selected. For each Adv-
CAPTCHA design, to select the best victim model, we run a
comprehensive analysis in which we iterate each commercial
ASR model as a victim model to create AdvCAPTCHA tasks
and pick the one that yields the AdvCAPTCHA with the
lowest estimated attack success rate averaged against all the
commercial ASR models. For Kenan and Devil, we select
Google Could Speech (Phone Call Model) as the final victim
model that yields the best security results. For Volcano, we
select Google Could Speech (Phone Call Model) as the victim
model for Digit-For-Machine-Only, and Microsoft Azure as the
victim model for Digit-For-Human-Only. The full analysis for
selecting the victim models for each AdvCAPTCHA design is
reported in Appendix A.

1) Results of Attacks from Commercial ASR Models:
Considering the scenario for attackers to use only a single
commercial ASR model, Google Cloud Speech (Phone Call
Model) yields the best estimated attack success rate of 53.57%
against Baseline. We also found that the Ensemble Model
achieves the highest estimated attack success rate (70.10% for
Baseline) compared to all commercial ASR models, which
aligns with the findings in prior work regarding the attack
improvement via ensemble [30]. To rank AdvCAPTCHAs

TABLE II. THE DIGIT ERROR RATES AND ESTIMATED SUCCESS RATES
FOR WELL-RESOURCED ATTACKERS ATTACKING EACH CAPTCHA DESIGN

WITH SELF-TRAINED MACHINE LEARNING MODELS.

Black-box Self-trained White-box Self-trained
Avg. digit
error rate

Est. attack
success rate

Avg. digit
error rate

Est. attack
success rate

Baseline 66.00% 0.15% 67.80% 0.11%
Kenan 63.50% 2.7% 58.00% 5.10%
Devil 89.50% <0.01% 81.00% 0.13%
Volcano 85.54% 4.30% 84.00% 5.60%

designs by the estimated attack success rate against the En-
semble Model: Volcano is the best with 0.22%, followed by
Kenan’s 31.91%, and Devil’s 92.51%. Given the high estimated
attack success rate of Devil against the Ensemble Model,
we additionally explored a more secure alternative version of
Devil by raising T from 5 to 6, and yielded an estimated
attack success rate of 61.19%. Our results suggest the technical
feasibility of AdvCAPTCHA’s capability of achieving overall
better security against commercial ASR models — i.e., lower
estimated success rate — than Baseline(T=6)’s 70.10% (see
Table I).

2) Results of Attacks from Self-trained Machine Learning
Model: Our results show that attacks from self-trained models
yield estimated attack success rates around or below 5%
(see Table II). Thus, it can be challenging for attackers to
break AdvCAPTCHA designs using a self-trained model in
both black-box and white-box scenarios. As expected, all of
the white-box self-trained models achieve an estimated attack
success rate that is at least no worse than black-box self-trained
models do (e.g., the attack success rate improves from 2.7% to
5.10% for Kenan, from 4.3% to 5.6% for Volcano), except for
Baseline. Baseline is the only audio CAPTCHA design which
attackers gain no benefits from attacking using white-box self-
trained models compared to their black-box counterparts (i.e.,
black-box: 0.15%; white-box: 0.11%). A possible explanation
is that the environmental background noise used in Baseline
contains randomness and that the white-box models fail to
learn the features properly.

Our results also reveal that AdvCAPTCHAs are, overall,
more vulnerable under commercial ASR models than the self-
trained models. The results hold true even with a white-box
self-trained model, with the attack success rate below 6%
across the board. In contrast, attackers can leverage ensemble
commercial ASR models to achieve a higher success rate (e.g.,
61.19% for Devil (T=6)). A possible explanation is that the
randomness in AdvCAPTCHA makes it extremely hard for an
attacker to train effective speech-to-text models with a limited
dataset and can be prone to overfitting on the training set. Thus,
the self-trained models can be less robust than the generic
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TABLE III. THE PROBABILITY FOR HUMANS AND ATTACKER MODELS PASSING DIFFERENT NUMBERS FOR DIGIT-FOR-MACHINE-ONLY IN A SIX-DIGIT
VOLCANO TASK. DUE TO THE SILENT VOLUME PERTURBATION IN VOLCANO, HUMANS WOULD HARDLY PERCEIVE DIGIT-FOR-MACHINE-ONLY

COMPARED TO ATTACKER MODELS. THE PROBABILITIES OF ATTACK-DETECTION DIGITS TRIGGERED BY HUMANS AND ATTACKER MODELS ARE PROVIDED
IN THE LAST THREE COLUMNS.

Number of
Digit-For-Machine-Only
Entered

1 2 3 4 5 6 Passed Failed w/
Detection

Failed w/o
Detection

Human 23.14% 8.82% 6.06% 5.23% 4.96% 4.13% 90.98% 5.23% 3.79%
Google Cloud Speech (Default) 99.70% 96.75% 84.73% 58.57% 26.57% 5.68% 0.58% 58.57% 40.93%
Google Cloud Speech (Phone Call) 98.24% 88.10% 63.73% 32.52% 10.13% 1.38% 1.01% 32.52% 66.47%
Microsoft Azure 99.78% 97.46% 87.14% 62.68% 30.06% 6.87% 1.18% 62.68% 36.14%
IBM 92.10% 67.15% 34.29% 11.21% 2.09% 0.17% 1.59% 11.21% 87.20%
Facebook Wit 69.60% 29.56% 7.59% 1.16% 0.10% <0.01% 2.32% 1.16% 96.52%
Ensemble 100% 100% 99.92% 98.82% 90.48% 56.79% 0.22% 98.82% 0.96%
Black-box Self-trained Model 75.28% 36.38% 10.87% 1.95% 0.19% <0.01% 4.30% 1.95% 93.75%
White-box Self-trained Model 73.79% 34.46% 9.89% 1.70% 0.16% <0.01% 5.60% 1.70% 92.70%

commercial ASR models, which are trained on a more diverse
dataset, against adversarial audio examples.

3) Results for Targeted Defense of Volcano: Volcano of-
fers the capability of attack detection of whether a failed
CAPTCHA attempt is a machine or not by using the targeted
adversarial perturbation technique (see Section IV-C). Table III
summarizes the probability for each ASR model recognizing
Digits-For-Machines-Only by the number of digits in a six-
digit AdvCAPTCHA task. Our security evaluation considers
a simplified scenario in which we only examine such attack
detection when clients fail the CAPTCHA task. Note that
clients pass Volcano when they get three out of the six
digits correct (see Section V-A3), and only the clients who
recognize four or more Digits-For-Machines-Only are regarded
as speech-to-text attackers.

Table III also summarizes the results of Volcano’s overall
targeted defense against each ASR model (in the last three
columns). We found that Microsoft Azure has a probability
near 63% to be captured in attack detection, followed by
Google Cloud Speech (Default Model)’s near 59%. IBM and
Facebook Wit have lower probabilities of about 11% and
1%, respectively. For the well-resourced self-trained models,
Black-box and White-box Self-trained Models are captured
with the probability of 1.95% and 1.70%. It is noteworthy
that the Ensemble Model, which is the strongest among all
attacker models, is captured around 99% in attack detection.
The results suggest that attacker models with stronger speech-
to-text recognition capability also tend to be captured by
Volcano’s targeted defense. In other words, the targeted de-
fense of Volcano provides an additional shield against popular
commercial ASR attack solutions to audio CAPTCHA.

VI. USABILITY EVALUATION

To provide a comprehensive usability evaluation, we ran
two online, controlled, within-subject user studies with 1) 121
non-PVI participants and 2) 11 PVIs, respectively. For the
former, we invited a larger scale population to demonstrate the
general applicability of our novel designs as typically done in
prior audio CAPTCHA studies [21]. For the latter, we exam-
ined quantitative and qualitative insights on the effectiveness of
AdvCAPTCHA for PVIs, who were day-to-day users of audio
CAPTCHA. Thus, the two-fold user study design provides

both breadth and depth aspects regarding the applicability of
AdvCAPTCHA.

A. Study I: Usability Evaluation with Non-PVIs

1) Procedure: We built an online test bed to conduct the
anonymous usability evaluation. Each participant solved and
evaluated six-digit audio CAPTCHA tasks that were created
with the three AdvCAPTCHA designs (i.e., Kenan, Devil,
Volcano) and the baseline design (i.e., Baseline) described in
Section IV. We balanced the order of the CAPTCHA designs
between participants using a Latin Square design, and we
randomly picked six digits for each audio CAPTCHA task.

Upon arrival, participants were asked to read through
the study’s informed consent on the welcoming page. Then,
they reported information about their demographics and their
prior knowledge of audio CAPTCHA. Participants were also
instructed on how to solve audio CAPTCHA tasks on the test
bed and were asked to adjust their devices’ volume until they
could hear an example six-digit audio clip clearly.

We follow the prior study on evaluating the usability of
audio CAPTCHAs [18]: for each audio CAPTCHA design,
participants completed three different six-digit tasks, and then
they answered questions about their perceived satisfaction,
easiness, and open-ended feedback about the design. For both
satisfaction and easiness, participants ranked the designs on
a five-Likert scale with “5” coded as “very satisfied” and
“very easy”, and “1” coded as “very unsatisfied” and “very
difficult.” After completing all the audio CAPTCHA tasks, par-
ticipants were asked to rank their preferences among the audio
CAPTCHA designs and to share their underlying reasons for
choosing the most and the least favorite design, respectively.
Besides their responses for usability evaluation, the test bed
also logged participants’ answers and the time spent on each
audio CAPTCHA task. The study protocol was approved by
our institution’s IRB.

2) Recruitment and Participants: We posted our anony-
mous online study recruitment on our university’s online
student forums and a subject-recruitment Facebook group.
We collected 121 responses from participants with normal or
corrected-to-normal vision and hearing. Among 120 partici-
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TABLE IV. RESULTS OF THE USABILITY TESTING IN STUDY I.

Accuracy
Completion
Time
(seconds)

Satisfaction
(1-5)

Easiness
(1-5)

Baseline 89.81% 16.13 3.55 3.83
Kenan 89.53% 19.93 3.01 2.99

Devil 95.32%
(79.06%, T=6) 17.03 3.44 3.60

Volcano 90.08% 22.71 2.12 2.16

pants 8 that provided valid responses, 57 were male and 63
were female, with a mean age of 25.9 (SD = 8.87). On a scale
from 1 (unfamiliar) to 5 (familiar), participants self-reported
their familiarity with audio CAPTCHA with a mean rating of
3.05 (SD = 1.20). On average, participants took 12.06 minutes
(SD = 6.11) to complete the study, and we compensated each
participant with a gift card worth $75 NTD ($2.5 USD).

B. Results of Study I

After manually checking the collected responses, all 121
responses were valid and we collected a total of 1,452 audio
CAPTCHA task attempts.

We evaluate the usability of AdvCAPTCHAs and Baseline
via the three metrics following the best practices in prior
studies: accuracy, completion time, and perceived satisfaction
and easiness [18], [34], as shown in Table IV. To assess
if the AdvCAPTCHAs (i.e., Devil, Kenan, Volcano) differ
from Baseline with statistical significance with respect to these
metrics, we ran a mixed-effects regression analysis on each
metric. In short, AdvCAPTCHAs achieved better or at least
similar accuracy than Baseline. Overall, participants spent
more time solving AdvCAPTCHAs than Baseline. Participants
perceived Baseline and Devil as more satisfying and easier to
answer than Kenan and Volcano. More details of the statistical
analysis results can be found in Appendix B.

1) Accuracy: To make our accuracy evaluation consistent
between machines and humans, when examining users’ ac-
curacy in getting through each audio CAPTCHA task, we
matched their answer keys with the same mechanism as
described in the security evaluation (see Section V-A). To
recap, we quantitatively determine an optimal threshold T
for each audio CAPTCHA design that we see as a possible
parameter used when deployed to the real world. A task is
considered passed (the client is a human) if a participant’s
answer key contains T or more of the correct digits. We set
T = 6 for Baseline, T = 5 for Kenan and Devil, and T = 3
for Volcano.

In general, AdvCAPTCHA achieved similar or better accu-
racy performance than Baseline (89.81%): 95.32% for Devil,
89.53% for Kenan, and 90.08% for Volcano. However, we also
found that creating a “stronger” version of AdvCAPTCHA
— e.g., by raising Devil’s T from 5 to 6 — also impacts
the accuracy significantly (accuracy of Devil dropped from
95% to 79%). Since Volcano is a targeted defense mechanism,
we additionally examined the probability that a user was
misidentified as a “machine attacker,” as described in Section
V-B3. As shown in the first row of Table III, 90.98% of the

8Due to a server transmitting error, we lost one participant’s self-report
demographic information and preference ranking.

participant attempts successfully passed tasks of Volcano, with
around 5% (5.23%) of them misidentified as attackers. Indeed,
there is room for improvement in Volcano to lower the rate of
misidentifying humans as machines. Nevertheless, our results
reveal the potential of Volcano’s applicability of attack detec-
tion in a near real-world setting. As a comparison, commercial
ASR models such as Google Cloud Speech (Default Model)
and Microsoft Azure have a probability of around 60% falling
for Volcano’s attack-detection digits.

2) Completion Time, Perceived Satisfaction and Easiness:
On average, our participants spent more time on solving
AdvCAPTCHA than Baseline, with Baseline in 16.13 sec-
onds (SD=7.47), Devil in 17.03 seconds (SD=9.95), Kenan
in 19.93 seconds (SD=15.52), and Volcano in 22.71 seconds
(SD=18.32). In addition, Baseline and Devil were generally
perceived as more satisfying and easy to answer, while Volcano
was the least satisfying and the most difficult.

3) Preferences: We examined our participants’ preferences
(i.e., preference ranking) for the four audio CAPTCHA de-
signs. 47.32% of the participants ranked Baseline as their
favorite design, citing reasons such as “the noise is continuous
and expectable” (11 out of 120) and “human’s noise is easy to
be distinguished from environmental noise in the background”
(14 out of 120). This was followed by Kenan’s 27.68% and
Devil’s 23.21%. Volcano was the least favorite, with only
1.78% of our participants ranking it as the favorite design, with
reasons such as “noise is ear-piercing and uncomfortable” (18
out of 120) or “mixing digits with two different voice volumes
is confusing” (12 out of 120).

C. Study II: Usability Evaluation with PVIs

To evaluate the usability of AdvCAPTCHA, we conducted
another study with PVIs, who were familiar with and relied
on audio CAPTCHA in their everyday life.

1) Participants: Eleven participants (nine males, and two
females) with a mean age of 28.82 (SD=4.17) were recruited
through public recruitment posts on social media. Seven of
them are congenitally blind while the other four are adven-
titiously blind. All of them were familiar with and relied on
screen readers to navigate computer screens. Participants were
confident in recognizing audio English number digits with a
self-reported confidence average of 4.64 (SD=0.5, on a scale
of 1-5) and familiar with a baseline audio CAPTCHA design
with a self-reported score averaged 4.27 (SD=0.79, on a scale
of 1-5). They were compensated with $450 NTD ($15 USD)
for their participation.

2) Procedure: We conducted an online study with each
of the participants with visual impairments using the confer-
encing application Google Meet. Note that our test bed was
implemented to be accessible and easy-to-use using a screen
reader, and none of our participants reported any technical
issues throughout the study.

After being informed of our study procedures and require-
ments, each participant was asked to solve three different tasks
for each of the three AdvCAPTCHA designs plus the Baseline
(3×4=12 tasks for each participant), the same as Study I.
The tasks for each participant were generated and assigned
randomly to mitigate potential systematic biases.
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Similar to Study I, after completing the three tasks of
one audio CAPTCHA design, participants were asked to rate
(on a scale of 1-5) satisfaction and easiness, and make open
remarks on the tasks. The interviews were held in a semi-
structured manner to elicit more insights on the influential
factors of usability. After completing the twelve assigned tasks,
participants were asked to rank the four audio CAPTCHA
designs (i.e., three AdvCAPTCHA designs and Baseline),
and to provide reasons for their ranking. Finally, partici-
pants were asked to comment on the comparison between
AdvCAPTCHAs and audio CAPTCHAs they encountered in
their life, and to provide overall feedback and suggestions for
improving AdvCAPTCHAs. The study took an average of 50
minutes to complete. The study protocol was approved by our
institution’s IRB.

D. Results of Study II

All audio CAPTCHA designs shared a similar accuracy
(over 90%), and that Baseline was solved the fastest and
Volcano the slowest, similar to the trend found in Study I.
However, PVIs reported slightly different than non-PVIs on
satisfaction and easiness measurements among AdvCAPTCHA
designs (see Table V). Specifically, Devil was the most sat-
isfying, easy-to-use, and favorite design for PVIs (six out
of 11 ranked it in first place) rather than Baseline. A pos-
sible explanation is that Baseline contains large background
noise, such as car driving, children, and horns, which are
particularly distracting for PVIs to solve audio CAPTCHA
tasks. In contrast, Devil contains quieter background noises.
Nevertheless, considering our relatively small sample size
(N=11) and potential novel experience that may result in more
positive feedback of Devil [33], as well as the fact that Devil
yields lower accuracy when having a higher security standard
(i.e., by raising T from 5 to 6, the accuracy drops from 97%
to 81%), we could not simply conclude Devil is a better
alternative for PVI users. Further longitude studies in the wild
with more PVIs are necessary to validate our findings. Still,
both our studies conducted with non-PVI and PVI users reveal
that Devil has the potential to achieve at least a similar usability
to Baseline.

Echoing our findings in Study I, Volcano was also per-
ceived as the least favorable type (eight out of 11 put it as
their least favorite design) by PVIs. Our participants spent the
longest time solving the tasks and felt them the most difficult.

It is noteworthy that our PVI participants preferred Devil
over Baseline, which was different from the results of non-PVI
participants. Specifically, PVI participants rated satisfaction
and easiness for Devil averaged 3.58 and 4.00, respectively,
and 3.44 and 3.60 for Baseline. In addition, slightly more
PVI participants ranked Devil in the first place (N=6) than
Baseline (N=5). Finally, PVI participants, overall, spent more
time solving audio CAPTCHA tasks than non-PVI participants.
This is because PVI would need more time to navigate and
interact with websites using screen readers.

When our participants elaborated their considerations on
ranking AdvCAPTCHAs, “digits clarity” (ten out of 11) and
“background noises” (five out of 11) were the two most
frequent reasons cited, which aligned with our findings in
Study I. Indeed, both characteristics of audio CAPTCHA are

TABLE V. RESULTS OF THE USABILITY TESTING IN STUDY II.

Accuracy
Completion
Time
(seconds)

Satisfaction
(1-5)

Easiness
(1-5)

Baseline 91.67% 19.72 3.42 3.83
Kenan 97.22% 30.47 2.33 2.75

Devil 97.22%
(80.56%, T=6) 22.41 3.58 4.00

Volcano 97.22% 33.04 1.92 2.25

associated with the dimension of Distortion in Yan et al.’s
CAPTCHA usability assessment framework [34]. Thus, it may
not be surprising that Volcano was the least favorite design as
it was criticized for its “sudden peaks with high frequency in
the background” (five out of 11) and “confusing characters due
to sound distortion (e.g., ‘6’ and ‘3’)” (eight out of 11). On
the contrary, Devil was the most favorite design and received
more positive feedback on digit clarity (six out of 11), and
its background noises were praised to be either subtle or
consistent enough not to impact the clarity of the digits (eight
out of 11).

In the same vein, Kenan was less favorite than Baseline
with the disadvantages of “unclear” (ten out of 11) and “in-
consistent distortion mechanism across digits (i.e., sometimes
the volume is distorted, sometimes the tone)” (three out of 11),
while digits in Baseline were praised for being clear (seven
out of 11). Still, participants perceived Kenan to have fewer
background noises (two out of 11).

VII. THRESHOLD SELECTION

In practice, there is a trade-off between security and usabil-
ity in CAPTCHA design [17], [23], [24]. Thus, when designing
AdvCAPTCHAs, we model this trade-off by considering a
threshold parameter for each CAPTCHA design. The design
rationale is that, for an inherently easier CAPTCHA (e.g.,
smaller perturbations), setting a higher bar (i.e., passing a
task if and only if all the digits were answered correctly) for
users to pass the task may have less impact on the usability
of CAPTCHA. Similarly, an inherently more difficult-to-solve
CAPTCHA may benefit from, regarding usability, lowering the
bar to decrease task difficulty (i.e., passing a task when only
partial digits were answered correctly). In AdvCAPTCHAs,
the threshold serves as an adaptive criterion for passing a
CAPTCHA task: for the six-digit tasks in each CAPTCHA
design c, we empirically selected the optimal criterion thresh-
old Tc to pass the CAPTCHA — i.e., the number of digits in
a six-digit task that should be correctly answered to pass the
task (1≤ Tc ≤6).

We approached the threshold selection between security
and task difficulty with the receiver operating characteristic
(ROC) curve [19], a well-known method for model evaluation
and selecting threshold. In our analysis, CAPTCHA could be
seen as a binary classifier that classifies a user into human
or non-human (i.e., machine). For example, when we take
humans as ’true’ instances and machines as ’false’ instances,
the attack success rate could be seen as a false-positive rate
as it represents that a CAPTCHA misclassifies machines into
humans; while human accuracy resembles a true positive
rate, indicating the ratio for humans to pass the test. This
correspondence enables us to construct an ROC curve yielded
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from true positive and false positive rates under different
thresholds.

A. ROC Curve of AdvCAPTCHAs against each Attacker Model
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Fig. 2. ROC Curves of AdvCAPTCHAs when encountering Ensemble
commercial ASRs. For each CAPTCHA type c, we plot points with attack
success rate and human accuracy (aTc , hT

c ) as coordinates under each thresh-
old T = 0, 1, ..., 7. Note that our CAPTCHA tasks contain only six digits.
This means that if T = 0, defenders will accept any clients, and thus, both
attack success rate and human accuracy will be 1.0. In contrast, with T = 7,
defenders will reject all the clients and make both quantities 0.0.

Now, we detail the analysis of a CAPTCHA’s security-
usability trade-off using the ROC curve (see Figure 2). Given
an attacker model, for each type of CAPTCHA c, we first
enumerated six possible thresholds T = 1, 2, ..., 6. For each
threshold T , we yielded a pair of attack success rate aTc
and human accuracy hT

c ((aTc , h
T
c )). The “Overall Human

Accuracy” rows in Table VI determined the human accuracy
hT
c , and the attack success rate aTc was calculated using

the binomial probability as mentioned in Section V-A with
DigitErrRate of CAPTCHA type c with the threshold T .

As the core objective of CAPTCHA is to differentiate
humans from machines, we desire higher gap [24] between
human and machine, which we refer to as human-machine
gap. Given an attacker model, the human-machine gap gTc
of CAPTCHA type c with the threshold value T could be
calculated as follows:

gTc = hT
c − aTc for T = 1, 2, ..., 6

The criterion threshold value Tc would then be the one
maximizing the human-machine gap.

Tc = argmax
T

gTc

For our low-resourced threat model, we use Ensemble
Commercial ASRs (Ensemble) as an example (see Figure 2).
Among the four CAPTCHA designs with their criterion
threshold parameter TBaseline, TV olcano, TDevil, TKenan, Vol-
cano achieved the best performance with g2V olcano = 0.91
(TV olcano = 2), with Baseline the lowest g6Baseline = 0.10
(TBaseline = 6). Similarly, Kenan (g5Kenan = 0.58) and Devil

Fig. 3. ROC Curves of AdvCAPTCHAs when encountering White-box &
Black-box Self-trained Models. Note that the upper-left point represents a
perfect CAPTCHA as described in Section VII-A. We zoom in the upper left
corner of each figure for a detailed comparison.

(g6Devil = 0.15) also achieved a higher human-machine gap
compared to Baseline against Ensemble.

Note that the diagonal line from (0.0, 0.0) to (1.0, 1.0) of
the ROC curve is known as no discrimination [22], and in
the context of CAPTCHA, it indicates that the CAPTCHA is
no better than randomly deciding whether a user is human
or not. The upper left point (0.0, 1.0) represents a perfect
CAPTCHA scheme with no attack success rate and perfect
human accuracy. Figure 2 shows that the ROC curves of
Baseline and Devil are similar to the diagonal, indicating that
when encountering a strong attacker model such as Ensemble,
Baseline and Devil would fail to distinguish humans from it.
On the other hand, the ROC curves of Kenan and Volcano are
closer to the upper left point, indicating better performance on
the defense. We provide all ROC curves against all commercial
ASRs in Appendix C.

For our well-resourced threat model, we summarize the
results in Figure 3 and the human-machine gaps in the last two
columns of Table VII. When encountering the black-box self-
trained models, Devil outperforms all the other CAPTCHA
with g4Devil = 0.99, larger than Baseline’s g5Baseline =
0.96. As for the white-box self-trained model, Devil achieves
g4Devil = 0.98 while Baseline has g5Baseline = 0.96. Note that a
slight decrease in the human-machine gap is expected since the
white-box self-trained model has been fine-tuned with samples
of CAPTCHAs, resulting in higher attack success rates. These
results demonstrate that Devil is close to a perfect CAPTCHA
against the well-resourced threat model. The other two Adv-
CAPTCHA designs, Kenan and Volcano, achieve about 86%
on the human-machine gaps against black-box and white-box
self-trained models with approximately 10% lower than Devil
and Baseline. Such an accuracy difference between humans
and machines, however, may still be acceptable to distinguish
humans from attacker models in some circumstances when
the need for security is lower and can be traded for human
accuracy and usability.

B. Threshold Selection Across Attacker Models

As mentioned, for each CAPTCHA design against each
attacker model, we select a threshold Tc to optimize the
CAPTCHA’s security-usability trade-off. In reality, however, a
global threshold will be necessary because we cannot always
have preconceived information about attackers’ models. In this
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TABLE VI. THE OVERALL HUMAN ACCURACY, ATTACK SUCCESS RATE, AND HUMAN-MACHINE GAP UNDER EACH THRESHOLD. NOTE THAT WE
SELECT OUR GLOBAL THRESHOLD WITH THE ONE THAT YIELDS THE LARGEST HUMAN-MACHINE GAP.

CAPTCHA Participants Fixed Threshold Global Threshold
1 2 3 4 5 6

Baseline
Overall Human Accuracy 1 1 1 1 0.97 0.90

6Overall Success Rate 0.94 0.74 0.49 0.30 0.19 0.11
Human-Machine Gap 0.06 0.26 0.51 0.70 0.78 0.79

Kenan
Human Accuracy 1 1 1 0.97 0.90 0.60

5Overall Success Rate 0.89 0.68 0.41 0.19 0.06 0.01
Human-Machine Gap 0.11 0.32 0.59 0.78 0.84 0.59

Devil
Overall Human Accuracy 1 1 1 1 0.95 0.79

5Overall Success Rate 0.73 0.46 0.31 0.23 0.16 0.08
Human-Machine Gap 0.27 0.54 0.69 0.77 0.79 0.71

Volcano
Overall Human Accuracy 0.95 0.94 0.91 0.81 0.61 0.25

3Overall Success Rate 0.55 0.18 0.04 0.004 0.0003 9e-6
Human-Machine Gap 0.40 0.76 0.87 0.81 0.61 0.25

TABLE VII. LOCAL THRESHOLDS AND THE CORRESPONDING HUMAN-MACHINE GAPS FOR ALL CAPTCHA DESIGNS AGAINST EACH ATTACKER
MODEL.

Microsoft
Azure

Google Cloud
Speech (Phone Call)

Google Cloud
Speech (Default) IBM Facebook

Wit

Ensemble
Commercial
ASRs

Black-box
Self-trained

White-box
Self-trained

local
thold

hu-mach
gap

local
thold

hu-mach
gap

local
thold

hu-mach
gap

local
thold

hu-mach
gap

local
thold

hu-mach
gap

local
thold

hu-mach
gap

local
thold

hu-mach
gap

local
thold

hu-mach
gap

Baseline 6 0.58 6 0.26 6 0.81 5 0.96 6 0.85 6 0.10 5 0.96 5 0.96
Kenan 5 0.58 4 0.96 3 0.97 4 0.94 4 0.93 5 0.58 5 0.88 5 0.85
Devil 6 0.62 6 0.43 6 0.59 5 0.93 5 0.86 6 0.15 4 0.99 4 0.98
Volcano 3 0.9 3 0.9 3 0.9 3 0.89 3 0.89 2 0.91 3 0.87 3 0.85

section, we discuss how we select a global threshold based on
each model’s local results across all the commercial ASRs,
black-box self-trained, and white-box self-trained models.

A global threshold for a CAPTCHA design is obtained
through a similar procedure to its local thresholds. The dif-
ference is that instead of depending on a specific model,
we calculate an overall attack success rate. Specifically, we
consider all of our threat models: low-resource (i.e., com-
mercial ASRs), well-resourced (i.e., black-box and white-box
self-trained models) as described in Section III. We define
the overall attack success rate as the mean of the success
rates under these three threat models (The “Overall Success
Rate” rows in Table VI). Then, with the overall attack success
rate and the overall human accuracy, we could calculate the
overall human-machine gap under each threshold following the
same procedure mentioned in Section VII-A. As shown in the
“Human-Machine Gap” rows in Table VI, we yield the best
human-machine gap for the usability-security trade-off with the
global thresholds of TBaseline = 6, TV olcano = 3, TDevil = 5,
TKenan = 5.

As shown in Table VII and Table VI, almost all of these
global thresholds differ from our local thresholds by no more
than one, with the only exception of Kenan against Google
Cloud Speech (Default Model) — i.e., a local threshold of
three and a global threshold of five. Nevertheless, the threshold
of either three or five can result in Kenan against Google Cloud
Speech (Default Model) close to the upper left perfect point
on the ROC curve (see Appendix Figure 4). According to
the “Human-Machine Gap” rows of Table VI, we could see
that Kenan and Volcano achieve 87.32% and 84.03% on the
human-machine gaps, which outperform Baseline’s 79.28%.
Devil achieves 79.36%, similar to Baseline. Still, as shown

in Table V, Devil has more positive feedback than Baseline
from PVIs due to less annoying background noises. Our
results suggest that AdvCAPTCHAs provide more capability
and flexibility in designing for the audio CAPTCHA security-
usability trade-off.

Finally, we took a closer look at the vulnerability from
random guess attacks when decreasing the CAPTCHA task
passing bar. Even with the lowest threshold of our Adv-
CAPTCHAs — i.e., TV olcano = 3 —, the attack success
rate of random guess attack in a six-digit CAPTCHA task
is still lower than 2% (

∑6
t=3

(
6
t

)
(0.1)t(0.9)6−t = 0.01585).

We also explored the effectiveness of our global thresholds
when encountering unseen models — i.e., humans and attacker
models never seen during the threshold selection process. To
that end, we conducted K-Fold and Leave-One-Out cross-
validation on humans and attacker models, respectively, to
simulate scenarios of unseen clients. The detailed procedure
is described in Appendix Section D. In summary, even against
hidden attacker models and humans, AdvCAPTCHAs could
still achieve 91%, 80%, and 87% on the average human-
machine gap with Volcano, Devil, and Kenan, respectively,
and outperform Baseline’s 78%.

VIII. DISCUSSION AND FUTURE WORK

In this section, we discuss the considerations when deploy-
ing AdvCAPTCHA in real-world scenarios.

Our findings show that, in the context of untargeted-
defense audio CAPTCHA, our proposed AdvCAPTCHAs can
provide an overall stronger defense against adversarial audio
CAPTCHA attacks. While they still suffer from lower usability
than Baseline, overall, we found the potential of Devil to

11



provide similar usability. To further improve the robustness
(especially toward commercial ASR models) and broader
applicability of Devil in real-world scenarios, future work can
apply the AdvCAPTCHA scheme to digits beyond numeric
digits (e.g., alphabetical digits, words), and languages beyond
English.

In the context of targeted-defense audio CAPTCHA, our
findings show the potential of the unique advantage of Volcano:
attacker models with a high attack success rate (e.g., Microsoft
Azure) that are capable of breaking untargeted-defense audio
CAPTCHAs (e.g., Baseline), were prone to be identified as
machines by Volcano. That is, ASR models’ capability to
recognize speech also leads them to be “captured” by Volcano.
On the other hand, models with a lower attack success rate
against untargeted-defense audio CAPTCHA (e.g., Self-trained
models) are unable to break Volcano anyway due to their lower
accuracy in recognizing speech. In other words, regardless
of which models attackers are using, Volcano is capable of
providing adequate security. On the other hand, our findings
also show that there is room for improving the usability of
Volcano. Future work can explore ways to increase the easiness
of Digits-For-Humans-Only. For example, lowering the audio
component removal threshold when reconstructing the audio
digits might trade security with better audio clarity and hence
increase usability. Additionally, when creating Volcano, one
could ensure the created audio digit should not be distorted
above a certain threshold (e.g., measured with the minimum
square error), and thus be easier for users to complete the tasks.
Such an approach can also be applied to the improvement of
the two other AdvCAPTCHAs, Kenan and Devil.

In this paper, we present the threshold selection of Adv-
CAPTCHA as a preliminary attempt to quantify the trade-off
between the security and usability of a CAPTCHA scheme.
When deploying AdvCAPTCHA in the real world, however,
one should adaptively prioritize, based on actual use logs,
either security or usability according to different use cases,
similar to the way we explored the T for Devil in this paper.
For example, for CAPTCHA prone to higher user errors (e.g.,
Volcano), while we suggest first exploring approaches to de-
crease task difficulty as discussed above, one can also fine-tune
the threshold by starting from the suggested optimal global
threshold and then gradually lowering (or increasing) the
threshold through iterative testing until finding the acceptable
security-usability balance. In addition, after the deployment
of an AdvCAPTCHA scheme, adaptive threshold adjustments
can be made while the system measures users’ accuracy in
solving CAPTCHA tasks — i.e., selecting the threshold that
yields the optimal CAPTCHA performance, concerning both
security and usability based on actual use logs. We also see
such threshold examination and selection processes applicable
to other CAPTCHA schemes more broadly.

A. Limitations

This study has several limitations. Firstly, our utilization of
an off-the-shelf Google Cloud service for generating base digit
audio with varied pitches and tones may present a constraint in
terms of diversity, potentially limiting a comprehensive evalua-
tion of AdvCAPTCHA. Future research should aim to broaden
the spectrum of audio inputs, incorporating a more diverse set
of voices, languages, accents, and digit types beyond numeric.

Secondly, the demographic composition of our user studies
is predominantly skewed toward a younger demographic, po-
tentially failing to accurately represent the full spectrum of
audio CAPTCHA users. It is essential to include a wider range
of demographics in future studies, particularly focusing on
older adults and individuals with different hearing abilities.
Such inclusivity will provide a more holistic understanding
of the usability and accessibility of audio CAPTCHAs across
diverse user groups. Lastly, given the dynamic and rapidly
evolving nature of adversarial machine learning and speech
recognition, the efficacy of our proposed AdvCAPTCHA may
fluctuate over time. As these technologies continue to advance,
our approach might become less effective against newer ASR
models and self-training algorithms. Therefore, ongoing testing
and adaptation are imperative to maintain the robustness of
AdvCAPTCHA. Future research can replicate and validate our
results against the latest state-of-the-art models.

IX. CONCLUSION

In this paper, we present AdvCAPTCHA, a set of au-
dio CAPTCHA designs driven by different adversarial ma-
chine learning techniques that can resist common speech-
to-text attacks while preserving usability. We also create a
novel targeted-defense audio CAPTCHA that enables detection
against attackers by implementing a honeypot-like defense in
AdvCAPTCHA. We launch a user study on both non-PVIs
and PVIs to measure usability in a real-world environment.
We search for a custom criterion for each type of audio
CAPTCHA, which models the security-usability trade-off in
the design of CAPTCHA. In a nutshell, our findings suggest
that AdvCAPTCHAs handle the security-usability trade-off
better than the extant audio CAPTCHA design. As commercial
ASR services become more easily accessible for attackers,
our work provides an effective defense mechanism for audio
CAPTCHA to distinguish machines from humans.
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APPENDIX

A. Victim Model Selection

For untargeted-defense AdvCAPTCHA such as Kenan and
Devil, we first generate AdvCAPTCHAs against different
victim models as described in Section II-A. Then, we calculate
the digit error rate averaged over all the commercial ASR
models and select the model with the highest digit error rate
as the victim model. This is because a higher digit error
rate implies that the generated CAPTCHA is more likely to
defend unseen models from attackers. For Devil and Kenan,
we chose Google Cloud Speech (Phone Model) as the victim
model. For targeted defense AdvCAPTCHA (i.e., Volcano),
since Volcano is composed of two parts, Digit-For-Human-
Only and Digit-For-Machine-Only, we first select different
victim models and generate the two parts separately, then
we estimate the probability for commercial ASR models to
identify an attack-detection digit (Digit-For-Machine-Only) on
every combination.

For simplicity, in Table VIII, we only show the rows with
victim models of Google Cloud Speech (Phone Call Model)
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and Microsoft Azure because of their higher attack success
rate.

B. Mixed-effects Regression Model

To assess if the designs of AdvCAPTCHA impact users’
ability to provide accurate responses, we ran a mixed-effects
regression model predicting if a task was accurately solved by
users, with the independent variable of the CAPTCHA design
(with Baseline as the reference) and with random intercepts to
account for variances among participants and iterations (i.e.,
the three-time task iteration for each CAPTCHA) within each
testing session. We found that Devil has a higher accuracy than
Baseline with statistical significance. Overall, our participants
achieved better or at least similar accuracy when solving tasks
of AdvCAPTCHA compared to Baseline (see Table IX).

As for completion time, we ran another regression model
to predict participants’ completion time for each challenge.
We set the CAPTCHA design as an independent variable with
random intercepts to account for variances among participants
and iterations within each testing session. We found higher
completion time for Kenan and Volcano than Baseline with
statistical significance. Overall, participants spent more time
solving AdvCAPTCHAs than they did for Baseline (see Table
IX).

Similarly, we built two regression models to assess if the
differences in our participants’ perceptions of AdvCAPTCHA
to Baseline design were statistically significant. Specifically,
we labeled satisfaction and easiness into binary variables with
the response of “4” or “5” in 5-Likert scales to be “satisfying”
and “easy to answer”, or otherwise the opposite (i.e., not
“satisfying” and not “easy to answer”). We found that Baseline
and Devil were perceived as more satisfying and easy to
answer than the other CAPTCHA designs (see Table IX).

C. ROC Curves Against Commercial ASRs

The ROC curves against commercial ASR models besides
the Ensemble model are summarized in Figure 4. From the
view of ROC curves, when encountering Google Cloud Speech
(Phone Call Model), Google Cloud Speech (Default Model),
and Facebook Wit, the ROC curve of Kenan is closer to the
upper left perfect point than all the other CAPTCHAs. As for
Microsoft Azure, Volcano’s ROC curve is the closest to the
upper left perfect point. Our proposed AdvCAPTCHAs only
fell short of Baseline against IBM with slight differences in
the human-machine gap as the curves almost overlap. For more
precise results, Table VII shows the exact local thresholds and
corresponding human-machine gaps for each CAPTCHA type
against all of the attacker models. Volcano achieves human-
machine gap g3V olcano higher than 90% with local threshold
TV olcano = 3 against Microsoft Azure and Ensemble Com-
mercial ASRs. Kenan achieves g4Kenan = 96% against Google
Cloud Speech (Phone Call Model), g4Kenan = 93% against
Facebook Wit with TKenan = 4, and g3Kenan = 97% against
Google Cloud Speech (Default Model) with TKenan = 3. Even
though the proposed AdvCAPTCHAs fall short of Baseline
against IBM, they still have human-machine gaps of about
90%. Notably, Baseline only has a human-machine gap of
58% against Microsoft Azure and 26% against Google Cloud
Speech (Phone Call Model). The results show that Baseline is

not secure enough to resist a single strong commercial ASR,
not to mention more powerful ones such as the Ensemble
Commercial ASRs.

D. Cross-validation on Humans & Attacker Models

As mentioned in Section VII, threshold Tc is selected for
each CAPTCHA type c to maximize the human-machine gap
according to the accuracy of a group of humans and the attack
success rate of a set of attacker models. We take a closer look
at whether the threshold selected is still effective even when
encountering unseen attackers and humans, as mentioned in
Section VII-B.

To compare the effectiveness of AdvCAPTCHAs and Base-
line when encountering unseen clients (machines or humans),
we provide cross-validation analysis on both human and at-
tacker models to prepare a hidden validation set for each
CAPTCHA. First, to simulate encountering unseen humans,
we use K-Fold cross-validation [8] with K = 5 to separate
humans into five folds. Each fold would contain 24 to 25
PVIs plus two to three non-PVIs. A hidden validation human
set would be one of the five folds, while the other four form
a training human set. To simulate unseen attacker models, we
use Leave-one-out cross-validation [8] to keep a single attacker
model as a validation attacker model while the others serve
as training attacker models. When selecting thresholds, only
training human set and training attacker models would be used
with the same procedure described in Section VII-B. After
the threshold is determined, we check the human-machine gap
of each CAPTCHA on the validation human set and attacker
model, which is hidden during threshold selection. The result
of cross-validation is summarized in Table X.
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TABLE VIII. THE DIGIT ERROR RATE FOR UNTARGETED CAPTCHA DESIGNS (I.E., DEVIL AND KENAN), AND THE ATTACK-DETECTION DIGIT
TRIGGER RATE FOR TARGETED CAPTCHA DESIGN (I.E., VOLCANO), WHEN GENERATED BY DIFFERENT VICTIM MODELS. FOR DEVIL AND KENAN, WE

CHOSE GOOGLE CLOUD SPEECH (PHONE MODEL) AS THE VICTIM MODEL BECAUSE THOSE CAPTCHAS HAVE THE LOWEST ATTACK SUCCESS RATE. FOR
VOLCANO, WE CHOSE THE COMBINATION OF GOOGLE CLOUD SPEECH (PHONE MODEL) FOR DIGIT-FOR-HUMAN-ONLY AND MICROSOFT AZURE FOR

DIGIT-FOR-MACHINE-ONLY.

Victim Model Digit Error Rate of Commercial ASR
Google (Default) Google (Phone) Microsoft IBM Facebook Average

Kenan Google Cloud Speech (Phone Call) 88.75% 85.63% 35.00% 77.50% 74.38% 72.25%
Microsoft Azure 80.63% 32.50% 50.62% 68.75% 71.25% 60.75%

Devil Google Cloud Speech (Phone Call) 23.57% 15.71% 25.71% 65.00% 52.14% 36.43%
Microsoft Azure 23.13% 14.37% 28.12% 68.13% 46.25% 36.00%

Digit-For-
Human-Only

Digit-For-
Machine-Only Attack-detection Digit Trigger Rate

Volcano

Google (Phone) Google (Phone) 49.00% 31.00% 29.50% 34.50% 16.00% 32.00%
Google (Phone) Microsoft 44.00% 30.00% 25.50% 40.50% 15.00% 31.00

Microsoft Google (Phone) 62.00% 49.00% 64.00% 34.50% 18.00% 45.50%
Microsoft Microsoft 52.00% 11.50% 54.50% 13.50% 23.50% 31.00%

TABLE IX. MIXED-EFFECTS REGRESSIONS PREDICTING ACCURACY, COMPLETION TIME, SATISFACTION, EASINESS AGAINST CAPTCHA DESIGN IN
STUDY I.

Acuracy Completion
Time Satisfaction Easiness

Est. Sig. Est. Sig. Est. Sig. Est. Sig.
Kenan v. Baseline –0.0312 3.799 *** –1.3143 *** –1.7112 ***
Devil v. Baseline 0.8684 ** 0.892 –0.2633 –0.3811
Volcano v. Baseline 0.0320 6.575 *** –3.0162 *** –3.7286 ***
Devil v. Kenan 0.8997 ** –2.907 ** 1.5010 *** 1.3301 ***
Volcano v. Kenan 0.0632 2.776 ** –1.7020 *** –2.0174 ***
Volcano v. Devil -0.8385 ** 5.683 *** –2.7529 *** –3.3475 ***

Significance: * p<.05; ** p<.01; *** p<.001

Fig. 4. The ROC curves of AdvCAPTCHAs against each commercial ASR model and self-trained model. Overall, AdvCAPTCHAs are closer to the upper left
point than Baseline against almost all the attacker models.
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TABLE X. THE RESULTS OF THE K-FOLD ON HUMANS AND LEAVE-ONE-OUT ON ATTACKER MODELS CROSS-VALIDATION. WE CALCULATE THE
AVERAGE HUMAN-MACHINE GAP ACROSS ALL OF OUR THREAT MODELS.

Attacker Model Leave-one-out Human Fold Number Baseline Volcano Devil Kenan

Microsoft
Azure

1 0.2477 0.9482 0.4006 0.6209
2 0.2744 0.9188 0.4689 0.5628
3 0.2675 0.9535 0.4759 0.6601
4 0.2466 0.9257 0.4411 0.6115
5 0.2744 0.9465 0.4550 0.6323

average 0.2621 0.9385 0.4483 0.6175

Google
Cloud
Speech
(Default)

1 0.8322 0.9542 0.3496 0.9399
2 0.8083 0.9248 0.4179 0.8818
3 0.8499 0.9595 0.4249 0.9791
4 0.843 0.9317 0.3901 0.9305
5 0.718 0.9525 0.4040 0.9513

average 0.8103 0.9445 0.3973 0.9365
Google
Cloud
Speech
(Phone
Call)

1 0.2867 0.9499 0.1581 0.9397
2 0.2628 0.9205 0.2264 0.8816
3 0.3044 0.9552 0.2334 0.9789
4 0.2975 0.9274 0.1986 0.9303
5 0.1725 0.9482 0.2125 0.9511

average 0.2648 0.9402 0.2058 0.9363

IBM

1 0.9257 0.9441 0.8955 0.9372
2 0.9018 0.9147 0.9638 0.8791
3 0.9434 0.9494 0.9708 0.9764
4 0.9365 0.9216 0.9360 0.9278
5 0.8115 0.9424 0.9499 0.9486

average 0.9038 0.9344 0.9432 0.9338

Facebook
Wit

1 0.8800 0.9368 0.8272 0.9348
2 0.8561 0.9074 0.8955 0.8767
3 0.8978 0.9421 0.9025 0.9740
4 0.8908 0.9143 0.8677 0.9254
5 0.7658 0.9351 0.8816 0.9462

average 0.8581 0.9271 0.8749 0.9314

Ensemble
Commer-
cial
ASRs

1 0.1251 0.9578 -0.0192 0.6209
2 0.1013 0.9284 0.0491 0.5628
3 0.1429 0.9631 0.0561 0.6601
4 0.1360 0.9353 0.0213 0.6115
5 0.011 0.9561 0.0352 0.6323

average 0.1033 0.9481 0.0285 0.6175
Black-
box
Self-
trained
Model

1 0.9251 0.917 0.9177 0.913
2 0.9012 0.8876 0.9860 0.8549
3 0.9429 0.9223 0.9930 0.9522
4 0.9360 0.8945 0.9582 0.9036
5 0.8110 0.9153 0.9721 0.9244

average 0.9032 0.9073 0.8008 0.9096
White-
box
Self-
trained
Model

1 0.9253 0.9049 0.9165 0.8890
2 0.9014 0.8755 0.9848 0.8309
3 0.9431 0.9102 0.9918 0.9282
4 0.9362 0.8824 0.9570 0.8796
5 0.8112 0.9032 0.9709 0.9004

average 0.9034 0.8952 0.9642 0.8856
Average across hidden commercial ASRs 0.7127 0.9353 0.6001 0.8812

Average across threat models 0.7801 0.9138 0.8042 0.8747
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